Differential effects of apamin- and charybdotoxin-sensitive K+ conductances on spontaneous discharge patterns of developing retinal ganglion cells.
نویسندگان
چکیده
The spontaneous discharge patterns of developing retinal ganglion cells are thought to play a crucial role in the refinement of early retinofugal projections. To investigate the contributions of intrinsic membrane properties to the spontaneous activity of developing ganglion cells, we assessed the effects of blocking large and small calcium-activated potassium conductances on the temporal pattern of such discharges by means of patch-clamp recordings from the intact retina of developing ferrets. Application of apamin and charybdotoxin (CTX), which selectively block the small and large calcium-activated potassium channels, respectively, resulted in significant changes in spontaneous firings. In cells recorded from the oldest animals [postnatal day 30 (P30)-P45], which manifested relatively sustained discharge patterns, application of either blocker induced bursting activity. With CTX the bursts were highly periodic, short in duration, and of high frequency. In contrast, with apamin the interburst intervals were longer, less regular, and lower in overall spike frequency. These differences between the effects of the two blockers on spontaneous activity were documented by spectral analysis of discharge patterns. Filling cells from which recordings were made with Lucifer yellow revealed that these effects were obtained in all three morphological classes of cells: alpha, beta, and gamma. These findings provide the first evidence that apamin- and CTX-sensitive K+ conductances can have differential effects on the spontaneous discharge patterns of retinal ganglion cells. Remarkably, the bursts of activity obtained after apamin application in more mature neurons appeared very similar to the spontaneous bursting patterns observed in developing neurons. These findings suggest that the maturation of calcium-activated potassium channels, particularly the apamin-sensitive conductance, may contribute to the changes in spontaneous firings exhibited by retinal ganglion cells during the course of normal development.
منابع مشابه
Differential roles of apamin- and charybdotoxin-sensitive K+ conductances in the generation of inferior olive rhythmicity in vivo.
The basic electrical rhythmicity of the olivocerebellar system was investigated in vivo using multiple electrode recordings of Purkinje cell (PC) complex spike (CS) activity. CSs demonstrate a 10 Hz rhythmicity, thought to result from the interaction of Ca2+ and Ca2+-dependent K+ conductances present in inferior olivary (IO) neurons. To assess the roles of different K+ channels in generating th...
متن کاملCalcium-activated potassium conductances in retinal ganglion cells of the ferret.
Patch-clamp recordings were made from isolated and intact retinal ganglion cells (RGCs) of the ferret to examine the calcium-activated potassium channels expressed by these neurons and to determine their functional role in the generation of spikes and spiking patterns. Single-channel recordings from isolated neurons revealed the presence of two calcium-sensitive potassium channels that had cond...
متن کاملEffects of haloperidol on K(+) currents in acutely isolated rat retinal ganglion cells.
PURPOSE Effects of haloperidol on K(+) currents (IKs) of rat retinal ganglion cells (RGCs) were examined, with the hypothesis that its alteration of IKs explains alterations in the pattern electroretinogram (PERG). METHODS Fast blue was injected into superior colliculi of rats (3-8 days old) to identify RGCs under epifluorescence illumination after retrograde transport to retinas. Retinas wer...
متن کاملEffects of nitric oxide in cultured prevertebral sympathetic ganglion neurons.
The effects of the nitric oxide donor, S-nitrosoacetylpenicillamine (SNAP), were tested on cultured dissociated guinea pig celiac ganglion neurons using whole cell patch-clamp recordings. S-nitrosoacetylpenicillamine induced a concentration- and voltage-dependent inwardly directed shift in holding current (inward current shift) in 89% of neurons. The inward current shift was prevented by pre-tr...
متن کاملDevelopmental changes in the neurotransmitter regulation of correlated spontaneous retinal activity.
Synchronized spontaneous rhythmic activity is a feature common to many parts of the developing nervous system. In the early visual system, before vision, developing circuits in the retina generate synchronized patterns of bursting activity that contain information useful for patterning connections between retinal ganglion cells and their central targets. However, how developing retinal circuits...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 7 شماره
صفحات -
تاریخ انتشار 1999